Highly-cited papers and hot papers from Bioactive Materials in Nov 2024

Published 25 November, 2024

We are delighted to bring you 172 highly-cited papers and 8 hot papers from Bioactive Materials

Highly-cited papers:

1. Double hits with bioactive nanozyme based on cobalt-doped nanoglass for acute and diabetic wound therapies through anti-inflammatory and pro-angiogenic functions  

Mandakhbayar, N; Ji, YS; El-Fiqi, A; Patel, KD; Yoon, DS; Dashnyam, K; Bayaraa, O; Jin, GS; Tsogtbaatar, K; Kim, TH; Lee, JH; Kim, HW

http://dx.doi.org/10.1016/j.bioactmat.2023.08.014

2. Activation of pyroptosis by specific organelle-targeting photodynamic therapy to amplify immunogenic cell death for anti-tumor immunotherapy      

Zeng, S; Chen, C; Zhang, LW; Liu, XS; Qian, M; Cui, HY; Wang, JY; Chen, QX; Peng, XJ 

http://dx.doi.org/10.1016/j.bioactmat.2022.07.016

3. Advances in orthodontic clear aligner materials     

Bichu, YM; Alwafi, A; Liu, XM; Andrews, J; Ludwig, B; Bichu, AY; Zou, BS      

http://dx.doi.org/10.1016/j.bioactmat.2022.10.006

4. Intelligent polymeric hydrogen sulfide delivery systems for therapeutic applications  

Rong, F; Wang, TJ; Zhou, Q; Peng, HW; Yang, JT; Fan, QL; Li, P      

http://dx.doi.org/10.1016/j.bioactmat.2022.03.043

5. Titanium carbide nanosheets with defect structure for photothermal-enhanced sonodynamic therapy

Li, GQ; Zhong, XY; Wang, XW; Gong, F; Lei, HL; Zhou, YK; Li, CF; Xiao, ZD; Ren, GX; Zhang, L; Dong, ZQ; Liu, Z; Cheng, L      

http://dx.doi.org/10.1016/j.bioactmat.2021.06.021

6. Copper single-atom catalysts with photothermal performance and enhanced nanozyme activity for bacteria-infected wound therapy

Wang, XW; Shi, QQ; Zha, ZB; Zhu, DD; Zheng, LR; Shi, LX; Wei, XW; Lian, L; Wu, KL; Cheng, L     

http://dx.doi.org/10.1016/j.bioactmat.2021.04.024

7. Biomedical applications of engineered heparin-based materials  

Zare, EN; Khorsandi, D; Zarepour, A; Yilmaz, H; Agarwal, T; Hooshmand, S; Mohammadinejad, R; Ozdemir, F; Sahin, O; Adiguzel, S; Khan, H; Zarrabi, A; Sharifi, E; Kumar, A; Mostafavi, E; Kouchehbaghi, NH; Mattoli, V; Zhang, F; Jucaud, V; Najafabadi, AH; Khademhosseini, A      

http://dx.doi.org/10.1016/j.bioactmat.2023.08.002

8. Going below and beyond the surface: Microneedle structure, materials, drugs, fabrication, and applications for wound healing and tissue regeneration

Lyu, S; Dong, ZF; Xu, XX; Bei, HP; Yuen, HY; Cheung, CWJ; Wong, MS; He, Y; Zhao, X      

http://dx.doi.org/10.1016/j.bioactmat.2023.04.003

9. Exosome/metformin-loaded self-healing conductive hydrogel rescues microvascular dysfunction and promotes chronic diabetic wound healing by inhibiting mitochondrial fission 

Zhang, Y; Li, M; Wang, YC; Han, F; Shen, K; Luo, L; Li, Y; Jia, YH; Zhang, J; Cai, WX; Wang, KJ; Zhao, M; Wang, J; Gao, XW; Tian, CY; Guo, BL; Hu, DH      

http://dx.doi.org/10.1016/j.bioactmat.2023.01.020

10. Piezoresistive MXene/Silk fibroin nanocomposite hydrogel for accelerating bone regeneration by Re-establishing electrical microenvironment    

Hu, ZC; Lu, JQ; Zhang, TW; Liang, HF; Yuan, H; Su, DH; Ding, W; Lian, RX; Ge, YX; Liang, B; Dong, J; Zhou, XG; Jiang, LB      

http://dx.doi.org/10.1016/j.bioactmat.2022.08.025

11. The horizon of bone organoid: A perspective on construction and application   

Chen, SS; Chen, X; Geng, Z; Su, JC      

http://dx.doi.org/10.1016/j.bioactmat.2022.01.048

12. Ca & Mn dual-ion hybrid nanostimulator boosting anti-tumor immunity via ferroptosis and innate immunity awakening    

Deng, X; Liu, TZ; Zhu, YT; Chen, JF; Song, Z; Shi, ZP; Chen, HR      

http://dx.doi.org/10.1016/j.bioactmat.2023.11.017

13. Intelligent microneedle patch with prolonged local release of hydrogen and magnesium ions for diabetic wound healing   

Wang, P; Wu, JYZ; Yang, HY; Liu, HK; Yao, TY; Liu, C; Gong, Y; Wang, MS; Ji, GY; Huang, P; Wang, XS      

http://dx.doi.org/10.1016/j.bioactmat.2023.01.001

14. Anti-oxidant anti-inflammatory and antibacterial tannin-crosslinked citrate-based mussel-inspired bioadhesives facilitate scarless wound healing

Wu, KK; Fu, MM; Zhao, YT; Gerhard, E; Li, Y; Yang, J; Guo, JS      

http://dx.doi.org/10.1016/j.bioactmat.2022.05.017

15. Ultrasound-triggered piezocatalytic composite hydrogels for promoting bacterial-infected wound healing     

Liu, D; Li, L; Shi, BL; Shi, B; Li, MD; Qiu, Y; Zhao, D; Shen, QD; Zhu, ZZ      

http://dx.doi.org/10.1016/j.bioactmat.2022.11.023

16. Bioinspired drug-delivery system emulating the natural bone healing cascade for diabetic periodontal bone regeneration     

Wang, H; Chang, XW; Ma, Q; Sun, BY; Li, H; Zhou, JM; Hu, YY; Yang, XY; Li, J; Chen, X; Song, JL      

http://dx.doi.org/10.1016/j.bioactmat.2022.08.029

17. Manganese molybdate nanodots with dual amplification of STING activation for cycle treatment of metalloimmunotherapy

Lei, HL; Li, QG; Li, GQ; Wang, TY; Lv, XJ; Pei, ZF; Gao, X; Yang, NL; Gong, F; Yang, YQ; Hou, GH; Chen, MJ; Ji, JS; Liu, Z; Cheng, L   

http://dx.doi.org/10.1016/j.bioactmat.2023.07.026

18. From oncolytic peptides to oncolytic polymers: A new paradigm for oncotherapy 

Liu, HM; Shen, W; Liu, WG; Yang, ZX; Yin, DK; Xiao, CS      

http://dx.doi.org/10.1016/j.bioactmat.2023.08.007

19. Progress in bioactive surface coatings on biodegradable Mg alloys: A critical review towards clinical translation    

Singh, N; Batra, U; Kumar, K; Ahuja, N; Mahapatro, A

http://dx.doi.org/10.1016/j.bioactmat.2022.05.009

20. Modified hyaluronic acid hydrogels with chemical groups that facilitate adhesion to host tissues enhance cartilage regeneration

Chen, JQ; Yang, JB; Wang, L; Zhang, XW; Heng, BC; Wang, DA; Ge, ZG      

http://dx.doi.org/10.1016/j.bioactmat.2020.11.020

21.Nanoparticles modified by polydopamine: Working as drug carriers   

Jin, AT; Wang, YT; Lin, KL; Jiang, L      

http://dx.doi.org/10.1016/j.bioactmat.2020.04.003

22. Photo-curing 3D printing technique and its challenges

Quan, HY; Zhang, T; Xu, H; Luo, S; Nie, J; Zhu, XQ      

http://dx.doi.org/10.1016/j.bioactmat.2019.12.003

23. Dual-crosslinked regenerative hydrogel for sutureless long-term repair of corneal defect      

Shen, XR; Li, SQ; Zhao, X; Han, JD; Chen, JX; Rao, ZL; Zhang, KX; Quan, DP; Yuan, J; Bai, Y      

http://dx.doi.org/10.1016/j.bioactmat.2022.06.006

24. TGF-β1-supplemented decellularized annulus fibrosus matrix hydrogels promote annulus fibrosus repair

Wei, Q; Liu, DC; Chu, GL; Yu, QF; Liu, Z; Li, JY; Meng, QC; Wang, WS; Han, FX; Li, B      

http://dx.doi.org/10.1016/j.bioactmat.2024.04.025

25. 3D bioactive composite scaffolds for bone tissue engineering     

Turnbull, G; Clarke, J; Picard, F; Riches, P; Jia, LL; Han, FX; Li, B; Shu, WM      

http://dx.doi.org/10.1016/j.bioactmat.2017.10.001

26. Bone grafts and biomaterials substitutes for bone defect repair: A review      

Wang, WH; Yeung, KWK      

http://dx.doi.org/10.1016/j.bioactmat.2017.05.007

27. DNA tetrahedral nanostructures for the biomedical application and spatial orientation of biomolecules

Wang, WJ; Lin, ML; Wang, WQ; Shen, ZF; Wu, ZS      

http://dx.doi.org/10.1016/j.bioactmat.2023.10.025

28. Cellulose-based composite scaffolds for bone tissue engineering and localized drug delivery

Janmohammadi, M; Nazemi, Z; Salehi, AOM; Seyfoori, A; John, J; Nourbakhsh, MS; Akbari, M  

http://dx.doi.org/10.1016/j.bioactmat.2022.05.018

29. Biomimetic manganese-based theranostic nanoplatform for cancer multimodal imaging and twofold immunotherapy 

Zhao, YY; Pan, YW; Zou, KL; Lan, Z; Cheng, GW; Mai, QY; Cui, H; Meng, QF; Chen, TK; Rao, L; Ma, LM; Yu, GT   

http://dx.doi.org/10.1016/j.bioactmat.2022.04.011

30. Articular cartilage and osteochondral tissue engineering techniques: Recent advances and challenges   

Wei, WY; Dai, HL      

http://dx.doi.org/10.1016/j.bioactmat.2021.05.011

31. Integrating coaxial electrospinning and 3D printing technologies for the development of biphasic porous scaffolds enabling spatiotemporal control in tumor ablation and osteochondral regeneration

He, WB; Li, CL; Zhao, ST; Li, ZD; Wu, J; Li, JJ; Zhou, HC; Yang, YF; Xu, Y; Xia, HT

http://dx.doi.org/10.1016/j.bioactmat.2023.12.020

32. Additively manufactured metallic biomaterials

Davoodi, E; Montazerian, H; Mirhakimi, AS; Zhianmanesh, M; Ibhadode, O; Shahabad, SI; Esmaeilizadeh, R; Sarikhani, E; Toorandaz, S; Sarabi, SA; Nasiri, R; Zhu, YZ; Kadkhodapour, J; Li, BB; Khademhosseini, A; Toyserkani, E      

http://dx.doi.org/10.1016/j.bioactmat.2021.12.027

33. An intrinsically bioactive hydrogel with on-demand drug release behaviors for diabetic wound healing

Hu, B; Gao, MZ; Boakye-Yiadom, KO; Ho, W; Yu, W; Xu, XY; Zhang, XQ

http://dx.doi.org/10.1016/j.bioactmat.2021.04.040

34. Mussel-inspired agarose hydrogel scaffolds for skin tissue engineering

Su, T; Zhang, MY; Zeng, QK; Pan, WH; Huang, YJ; Qian, YN; Dong, W; Qi, XL; Shen, JL     

http://dx.doi.org/10.1016/j.bioactmat.2020.09.004

35. Poly(lactic-co-glycolic acid)-based composite bone-substitute materials

Zhao, DY; Zhu, TT; Li, J; Cui, LG; Zhang, ZY; Zhuang, XL; Ding, JX

http://dx.doi.org/10.1016/j.bioactmat.2020.08.016

36. Heterogeneous DNA hydrogel loaded with Apt02 modified tetrahedral framework nucleic acid accelerated critical-size bone defect repair

Han, YF; Wu, Y; Wang, FX; Li, GF; Wang, J; Wu, X; Deng, AF; Ren, XX; Wang, XH; Gao, J; Shi, ZM; Bai, L; Su, JC      

http://dx.doi.org/10.1016/j.bioactmat.2024.01.009

37. Cartilage-inspired self-assembly glycopeptide hydrogels for cartilage regeneration via ROS scavenging

Zhao, ZJ; Xia, XW; Liu, JL; Hou, MZ; Liu, Y; Zhou, ZZ; Xu, Y; He, F; Yang, HL; Zhang, YJ; Ruan, CS; Zhu, XS      

http://dx.doi.org/10.1016/j.bioactmat.2023.10.013

38. Bacterial extracellular vesicles as bioactive nanocarriers for drug delivery: Advances and perspectives

Liu, H; Zhang, Q; Wang, SC; Weng, WZ; Jing, YY; Su, JC    

http://dx.doi.org/10.1016/j.bioactmat.2021.12.006

39. A bone-targeted engineered exosome platform delivering siRNA to treat osteoporosis 

Cui, YZ; Guo, YY; Kong, L; Shi, JY; Liu, P; Li, R; Geng, YT; Gao, WH; Zhang, ZP; Fu, DH

http://dx.doi.org/10.1016/j.bioactmat.2021.09.015

40. How far is Lignin from being a biomedical material?    

Sugiarto, S; Leow, Y; Tan, CL; Wang, G; Kai, D      

http://dx.doi.org/10.1016/j.bioactmat.2021.06.023

41. Reactive oxygen species-based nanomaterials for the treatment of myocardial ischemia reperfusion injuries  

Zhao, TJ; Wu, W; Sui, LH; Huang, Q; Nan, YY; Liu, JH; Ai, KL      

http://dx.doi.org/10.1016/j.bioactmat.2021.06.006

42. Construction of heparin-based hydrogel incorporated with Cu5.4O ultrasmall nanozymes for wound healing and inflammation inhibition

Peng, Y; He, DF; Ge, X; Lu, YF; Chai, YH; Zhang, YX; Mao, ZW; Luo, GX; Deng, J; Zhang, Y

http://dx.doi.org/10.1016/j.bioactmat.2021.02.006

43. A targeting black phosphorus nanoparticle based immune cells nano-regulator for photodynamic/photothermal and photo-immunotherapy      

Zhang, XG; Tang, JJ; Li, C; Lu, Y; Cheng, LL; Liu, J      

http://dx.doi.org/10.1016/j.bioactmat.2020.08.024

44. Keratin - Based materials for biomedical applications   

Feroz, S; Muhammad, N; Ratnayake, J; Dias, G      

http://dx.doi.org/10.1016/j.bioactmat.2020.04.007

45. NK cell-based tumor immunotherapy     

Zhang, H; Yang, L; Wang, TT; Li, Z      

http://dx.doi.org/10.1016/j.bioactmat.2023.08.001

46. Advanced surface engineering of titanium materials for biomedical applications: From static modification to dynamic responsive regulation      

Jiang, PL; Zhang, YM; Shi, B; Zhang, LH; Huang, QL; Yang, Y; Tang, PF; Lin, CJ    

http://dx.doi.org/10.1016/j.bioactmat.2023.03.006

47. Sustained release of magnesium and zinc ions synergistically accelerates wound healing    

Yang, F; Xue, YJ; Wang, FL; Guo, DN; He, YJ; Zhao, X; Yan, FY; Xu, YQ; Xia, DD; Liu, YS      

http://dx.doi.org/10.1016/j.bioactmat.2023.02.019

48. A tumor cell membrane-coated self-amplified nanosystem as a nanovaccine to boost the therapeutic effect of anti-PD-L1 antibody 

Li, ZL; Cai, H; Li, ZQ; Ren, L; Ma, XL; Zhu, HY; Gong, QY; Zhang, H; Gu, ZW; Luo, K      

http://dx.doi.org/10.1016/j.bioactmat.2022.08.028

49. A Mg2+/polydopamine composite hydrogel for the acceleration of infected wound healing    

Guo, ZY; Zhang, ZZ; Zhang, N; Gao, WX; Li, J; Pu, YJ; He, B; Xie, J  

http://dx.doi.org/10.1016/j.bioactmat.2021.11.036

50. Bioactive hydrogels for bone regeneration

Bai, X; Gao, MZ; Syed, S; Zhuang, J; Xu, XY; Zhang, XQ      

http://dx.doi.org/10.1016/j.bioactmat.2018.05.006

51. M2 exosomes modified by hydrogen sulfide promoted bone regeneration by moesin mediated endocytosis     

Zhou, YK; Han, CS; Zhu, ZL; Chen, P; Wang, YM; Lin, S; Chen, LJ; Zhuang, ZM; Zhou, YH; Yang, RL      

http://dx.doi.org/10.1016/j.bioactmat.2023.08.006

52. Microenvironment responsive nanocomposite hydrogel with NIR photothermal therapy, vascularization and anti-inflammation for diabetic infected wound healing     

Zhu, SL; Zhao, BJ; Li, MC; Wang, H; Zhu, JY; Li, QT; Gao, HC; Feng, Q; Cao, XD      

http://dx.doi.org/10.1016/j.bioactmat.2023.03.005

53. Exosome-functionalized magnesium-organic framework-based scaffolds with osteogenic, angiogenic and anti-inflammatory properties for accelerated bone regeneration  

Kang, Y; Xu, C; Meng, L; Dong, XF; Qi, M; Jiang, DQ      

http://dx.doi.org/10.1016/j.bioactmat.2022.02.012

54. Glucose and MMP-9 dual-responsive hydrogel with temperature sensitive self-adaptive shape and controlled drug release accelerates diabetic wound healing  

Zhou, WY; Duan, ZG; Zhao, J; Fu, RZ; Zhu, CH; Fan, DD      

http://dx.doi.org/10.1016/j.bioactmat.2024.01.004

55. Microgel assembly: Fabrication, characteristics and application in tissue engineering and regenerative medicine   

Feng, Q; Li, DG; Li, QT; Cao, XD; Dong, H 

http://dx.doi.org/10.1016/j.bioactmat.2021.07.020

56. Construction of multifunctional hydrogel based on the tannic acid-metal coating decorated MoS2 dual nanozyme for bacteria-infected wound healing  

Li, Y; Fu, RZ; Duan, ZG; Zhu, CH; Fan, DD      

http://dx.doi.org/10.1016/j.bioactmat.2021.07.023

57. Versatile dopamine-functionalized hyaluronic acid-recombinant human collagen hydrogel promoting diabetic wound healing via inflammation control and vascularization tissue regeneration

Wang, Y; Zhang, Y; Yang, YP; Jin, MY; Huang, S; Zhuang, ZM; Zhang, T; Cao, LL; Lin, XY; Chen, J; Du, YZ; Chen, J; Tan, WQ  

http://dx.doi.org/10.1016/j.bioactmat.2024.02.010

58. Neddylation suppression by a macrophage membrane-coated nanoparticle promotes dual immunomodulatory repair of diabetic wounds     

Zeng, RY; Lv, B; Lin, Z; Chu, XY; Xiong, Y; Knoedler, S; Cao, FQ; Lin, CL; Chen, L; Yu, CY; Liao, JW; Zhou, W; Dai, GD; Shahbazi, MA; Mi, BB; Liu, GH      

http://dx.doi.org/10.1016/j.bioactmat.2023.12.025

59. Ameliorating impaired cardiac function in myocardial infarction using exosome-loaded gallic-acid-containing polyurethane scaffolds  

Das, A; Nikhil, A; Shiekh, PA; Yadav, B; Jagavelu, K; Kumar, A      

http://dx.doi.org/10.1016/j.bioactmat.2023.11.009

60. Biomaterial scaffolds in maxillofacial bone tissue engineering: A review of recent advances  

Huang, XY; Lou, YX; Duan, YH; Liu, H; Tian, J; Shen, Y; Wei, X    

http://dx.doi.org/10.1016/j.bioactmat.2023.10.031

61. Copper ion/gallic acid MOFs-laden adhesive pomelo peel sponge effectively treats biofilm-infected skin wounds and improves healing quality

Yang, JQ; Huang, ZZ; Tan, J; Pan, JY; Chen, SX; Wan, WB      

http://dx.doi.org/10.1016/j.bioactmat.2023.10.005

62. Biofabrication methods for reconstructing extracellular matrix mimetics      

Aazmi, A; Zhang, D; Mazzaglia, C; Yu, MF; Wang, Z; Yang, HY; Huang, YYS; Ma, L     

http://dx.doi.org/10.1016/j.bioactmat.2023.08.018

63. AI-enabled organoids: Construction, analysis, and application     

Bai, L; Wu, Y; Li, GF; Zhang, WC; Zhang, H; Su, JC      

http://dx.doi.org/10.1016/j.bioactmat.2023.09.005

64. A biomimetic piezoelectric scaffold with sustained Mg2+ release promotes neurogenic and angiogenic differentiation for enhanced bone regeneration      

Wang, LY; Pang, YY; Tang, YJ; Wang, XY; Zhang, DX; Zhang, X; Yu, YJ; Yang, XP; Cai, Q   

http://dx.doi.org/10.1016/j.bioactmat.2022.11.004

65. Breathable, antifreezing, mechanically skin-like hydrogel textile wound dressings with dual antibacterial mechanisms 

Jiang, SH; Deng, JJ; Jin, YH; Qian, B; Lv, WQ; Zhou, QQ; Mei, EH; Neisiany, RE; Liu, YH; You, ZW; Pan, J      

http://dx.doi.org/10.1016/j.bioactmat.2022.08.014

66. Therapeutic strategies of three-dimensional stem cell spheroids and organoids for tissue repair and regeneration  

Kim, W; Gwon, Y; Park, S; Kim, H; Kim, J

http://dx.doi.org/10.1016/j.bioactmat.2022.03.039

67. Chitosan@Puerarin hydrogel for accelerated wound healing in diabetic subjects by miR-29ab1 mediated inflammatory axis suppression 

Zeng, XL; Chen, BH; Wang, LP; Sun, YX; Jin, Z; Liu, XY; Ouyang, LP; Liao, Y      

http://dx.doi.org/10.1016/j.bioactmat.2024.04.032

68. Smart bioadhesives for wound healing and closure

Zhu, J; Zhou, HL; Gerhard, EM; Zhang, SH; Rodríguez, FIP; Pan, TS; Yang, HB; Lin, Y; Yang, J; Cheng, HY    

http://dx.doi.org/10.1016/j.bioactmat.2022.04.020

69. Fabrication of physical and chemical crosslinked hydrogels for bone tissue engineering  

Xue, X; Hu, Y; Wang, SC; Chen, X; Jiang, YY; Su, JC      

http://dx.doi.org/10.1016/j.bioactmat.2021.10.029

70. Polydopamine nanoparticle-dotted food gum hydrogel with excellent antibacterial activity and rapid shape adaptability for accelerated bacteria-infected wound healing     

Zeng, QK; Qian, YN; Huang, YJ; Ding, F; Qi, XL; Shen, JL 

http://dx.doi.org/10.1016/j.bioactmat.2021.01.035

71. Accelerated degradation of HAP/PLLA bone scaffold by PGA blending facilitates bioactivity and osteoconductivity    

Shuai, CJ; Yang, WJ; Feng, P; Peng, SP; Pan, H  

http://dx.doi.org/10.1016/j.bioactmat.2020.09.001

72. Antibacterial conductive self-healing hydrogel wound dressing with dual dynamic bonds promotes infected wound healing 

Qiao, LP; Liang, YP; Chen, JY; Huang, Y; Alsareii, SA; Alamri, AM; Harraz, FA; Guo, BL      

http://dx.doi.org/10.1016/j.bioactmat.2023.07.015

73. Antibacterial gas therapy: Strategies, advances, and prospects    

Wang, TY; Zhu, XY; Wu, FG   

http://dx.doi.org/10.1016/j.bioactmat.2022.10.008

74. A novel sprayable thermosensitive hydrogel coupled with zinc modified metformin promotes the healing of skin wound     

Liu, ZW; Tang, WZ; Liu, JY; Han, YY; Yan, QN; Dong, YC; Liu, XM; Yang, DZ; Ma, GX; Cao, HL      

http://dx.doi.org/10.1016/j.bioactmat.2022.06.008

75. A reactive oxygen species-responsive hydrogel encapsulated with bone marrow derived stem cells promotes repair and regeneration of spinal cord injury     

Li, ZM; Zhao, TF; Ding, J; Gu, HC; Wang, QX; Wang, YF; Zhang, DT; Gao, CY 

http://dx.doi.org/10.1016/j.bioactmat.2024.04.029

76. Nitrogen-doped fluorescence carbon dots as multi-mechanism detection for iodide and curcumin in biological and food samples

Tang, XD; Yu, HM; Bui, B; Wang, LY; Xing, C; Wang, SY; Chen, ML; Hu, ZZ; Chen, W      

http://dx.doi.org/10.1016/j.bioactmat.2020.11.006

77. A bioactive composite hydrogel dressing that promotes healing of both acute and chronic diabetic skin wounds   

Shang, SL; Zhuang, KT; Chen, JW; Zhang, M; Jiang, SM; Li, W      

http://dx.doi.org/10.1016/j.bioactmat.2023.12.026

78. Collagen fibril-like injectable hydrogels from self-assembled nanoparticles for promoting wound healing   

Li, SS; Li, XY; Xu, YD; Fan, CR; Li, ZA; Zheng, L; Luo, BC; Li, ZP; Lin, BF; Zha, ZG; Zhang, HT; Wang, XY      

http://dx.doi.org/10.1016/j.bioactmat.2023.09.012

79. Multifunctional nanocomposites modulating the tumor microenvironment for enhanced cancer immunotherapy

Sharma, P; Otto, M      

http://dx.doi.org/10.1016/j.bioactmat.2023.08.022

80. ROS-responsive 18β-glycyrrhetic acid-conjugated polymeric nanoparticles mediate neuroprotection in ischemic stroke through HMGB1 inhibition and microglia polarization regulation

Jin, LL; Zhu, ZX; Hong, LJ; Qian, ZF; Wang, F; Mao, ZW   

http://dx.doi.org/10.1016/j.bioactmat.2022.03.040

81. Polydopamine-mediated graphene oxide and nanohydroxyapatite-incorporated conductive scaffold with an immunomodulatory ability accelerates periodontal bone regeneration in diabetes  

Li, YZ; Yang, L; Hou, Y; Zhang, ZZ; Chen, M; Wang, MX; Liu, J; Wang, J; Zhao, ZH; Xie, CM; Lu, X      

http://dx.doi.org/10.1016/j.bioactmat.2022.03.021

82. Mussel-inspired nanozyme catalyzed conductive and self-setting hydrogel for adhesive and antibacterial bioelectronics   

Jia, ZR; Lv, XH; Hou, Y; Wang, KF; Ren, FZ; Xu, DG; Wang, Q; Fan, KL; Xie, CM; Lu, X      

http://dx.doi.org/10.1016/j.bioactmat.2021.01.033

83. A mussel-inspired supramolecular hydrogel with robust tissue anchor for rapid hemostasis of arterial and visceral bleedings 

Qiao, ZW; Lv, XL; He, SH; Bai, SM; Liu, XC; Hou, LX; He, JJ; Tong, DM; Ruan, RJ; Zhang, J; Ding, JX; Yang, HH 

http://dx.doi.org/10.1016/j.bioactmat.2021.01.039

84. Bone/cartilage targeted hydrogel: Strategies and applications     

Zhang, H; Wu, SL; Chen, WK; Hu, Y; Geng, Z; Su, JC      

http://dx.doi.org/10.1016/j.bioactmat.2022.10.028

85. Sequential gastrodin release PU/n-HA composite scaffolds reprogram macrophages for improved osteogenesis and angiogenesis 

Li, LM; Li, Q; Gui, L; Deng, Y; Wang, L; Jiao, JL; Hu, YR; Lan, XQ; Hou, JH; Li, Y; Lu, D      

http://dx.doi.org/10.1016/j.bioactmat.2022.03.037

86. An overview of filtration efficiency through the masks: Mechanisms of the aerosols penetration   

Tcharkhtchi, A; Abbasnezhad, N; Seydani, MZ; Zirak, N; Farzaneh, S; Shirinbayan, M      

http://dx.doi.org/10.1016/j.bioactmat.2020.08.002

87. Antibacterial and angiogenic chitosan microneedle array patch for promoting wound healing 

Chi, JJ; Zhang, XX; Chen, CW; Shao, CM; Zhao, YJ; Wang, YG

http://dx.doi.org/10.1016/j.bioactmat.2020.02.004

88. Chitosan based bioactive materials in tissue engineering applications-A review   

Islam, MM; Shahruzzaman, M; Biswas, S; Sakib, MN; Rashid, TU      

http://dx.doi.org/10.1016/j.bioactmat.2020.01.012

89. Advancing neural regeneration via adaptable hydrogels: Enriched with Mg2+ and silk fibroin to facilitate endogenous cell infiltration and macrophage polarization   

Gao, YS; Wang, YY; Zhang, JY; Zhang, M; Dai, CL; Zhang, Y; Zhang, LZ; Bian, LM; Yang, YM; Zhang, KY; Zhao, YH      

http://dx.doi.org/10.1016/j.bioactmat.2023.10.026

90. Combination of biodegradable hydrogel and antioxidant bioadhesive for treatment of breast cancer recurrence and radiation skin injury   

Zhang, ZD; Cao, QN; Xia, Y; Cui, CY; Qi, Y; Zhang, Q; Wu, YH; Liu, JF; Liu, WG      

http://dx.doi.org/10.1016/j.bioactmat.2023.08.021

91. Functionalized liposomes for targeted breast cancer drug delivery     

Nel, J; Elkhoury, K; Velot,; Bianchi, A; Acherar, S; Francius, G; Tamayol, A; Grandemange, S; Arab-Tehrany, E      

http://dx.doi.org/10.1016/j.bioactmat.2022.12.027

92. Zinc oxide nanoparticles inhibit osteosarcoma metastasis by downregulating β-catenin via HIF-1α/BNIP3/LC3B-mediated mitophagy pathway

He, GP; Nie, JJ; Liu, X; Ding, ZH; Luo, P; Liu, Y; Zhang, BW; Wang, RX; Liu, XG; Hai, Y; Chen, DF

http://dx.doi.org/10.1016/j.bioactmat.2022.05.006

93. Hyaluronic acid association with bacterial, fungal and viral infections: Can hyaluronic acid be used as an antimicrobial polymer for biomedical and pharmaceutical applications?    

Zamboni, F; Wong, CK; Collins, MN      

http://dx.doi.org/10.1016/j.bioactmat.2022.04.023

94. Biomimetic injectable hydrogel microspheres with enhanced lubrication and controllable drug release for the treatment of osteoarthritis 

Han, Y; Yang, JL; Zhao, WW; Wang, HM; Sun, YL; Chen, YJ; Luo, J; Deng, LF; Xu, XY; Cui, WG; Zhang, HY    

http://dx.doi.org/10.1016/j.bioactmat.2021.03.022

95. 3D bioprinting for biomedical devices and tissue engineering: A review of recent trends and advances

Derakhshanfar, S; Mbeleck, R; Xu, KG; Zhang, XY; Zhong, W; Xing, M      

http://dx.doi.org/10.1016/j.bioactmat.2017.11.008

96. Exosome regulation of immune response mechanism: Pros and cons in immunotherapy   

Essola, JM; Zhang, MJ; Yang, HY; Li, FZ; Xia, BZ; Mavoungou, JF; Hussain, A; Huang, YY      

http://dx.doi.org/10.1016/j.bioactmat.2023.09.018

97. Gold nanoparticles-embedded ceria with enhanced antioxidant activities for treating inflammatory bowel disease

Li, MY; Liu, J; Shi, L; Zhou, C; Zou, MZ; Fu, D; Yuan, Y; Yao, CD; Zhang, LF; Qin, SM; Liu, MD; Cheng, Q; Wang, Z; Wang, L 

http://dx.doi.org/10.1016/j.bioactmat.2023.01.015

98. Nanodrugs alleviate acute kidney injury: Manipulate RONS at kidney 

Chen, QH; Nan, YY; Yang, YQ; Xiao, ZX; Liu, M; Huang, J; Xiang, YT; Long, XY; Zhao, TJ; Wang, XY; Huang, Q; Ai, KL      

http://dx.doi.org/10.1016/j.bioactmat.2022.09.021

99. Polymeric dual-modal imaging nanoprobe with two-photon aggregation-induced emission for fluorescence imaging and gadolinium-chelation for magnetic resonance imaging   

Xiao, XY; Cai, H; Huang, QR; Wang, B; Wang, XM; Luo, Q; Li, YG; Zhang, H; Gong, QY; Ma, XL; Gu, ZW; Luo, K      

http://dx.doi.org/10.1016/j.bioactmat.2022.04.026

100. Robust hydrogel adhesives for emergency rescue and gastric perforation repair    

Yu, J; Qin, YY; Yang, YX; Zhao, XD; Zhang, ZX; Zhang, Q; Su, YQ; Zhang, YF; Cheng, YL  

http://dx.doi.org/10.1016/j.bioactmat.2022.05.010

101. Tetrahedral framework nucleic acids-based delivery of microRNA-155 inhibits choroidal neovascularization by regulating the polarization of macrophages

Qin, X; Xiao, LR; Li, N; Hou, C; Li, WM; Li, JJ; Yan, NH; Lin, YF      

http://dx.doi.org/10.1016/j.bioactmat.2021.11.031

102. Decellularized extracellular matrix scaffolds: Recent trends and emerging strategies in tissue engineering 

Zhang, XW; Chen, X; Hong, H; Hu, RB; Liu, JS; Liu, CS     

http://dx.doi.org/10.1016/j.bioactmat.2021.09.014

103. MoS2-based nanocomposites for cancer diagnosis and therapy  

Wang, JL; Sui, LH; Huang, J; Miao, L; Nie, YB; Wang, KS; Yang, ZC; Huang, Q; Gong, X; Nan, YY; Ai, KL     

http://dx.doi.org/10.1016/j.bioactmat.2021.04.021

104. Bioinspired mineralized collagen scaffolds for bone tissue engineering

Li, ZW; Du, TM; Ruan, CS; Niu, XF      

http://dx.doi.org/10.1016/j.bioactmat.2020.11.004

105. Black phosphorus nanosheets-enabled DNA hydrogel integrating 3D-printed scaffold for promoting vascularized bone regeneration   

Miao, YL; Chen, YH; Luo, JS; Liu, X; Yang, Q; Shi, XT; Wang, YJ      

http://dx.doi.org/10.1016/j.bioactmat.2022.08.005

106. Nanocellulose, a versatile platform: From the delivery of active molecules to tissue engineering applications 

Patil, TV; Patel, DK; Dutta, SD; Ganguly, K; Santra, TS; Lim, KT

http://dx.doi.org/10.1016/j.bioactmat.2021.07.006

107. The application of nanoparticles in cancer immunotherapy: Targeting tumor microenvironment

Yang, MY; Li, JP; Gu, P; Fan, XQ      

http://dx.doi.org/10.1016/j.bioactmat.2020.12.010

108. A tough, antibacterial and antioxidant hydrogel dressing accelerates wound healing and suppresses hypertrophic scar formation in infected wounds      

Liu, XQ; Sun, YM; Wang, J; Kang, YY; Wang, ZL; Cao, WB; Ye, J; Gao, CY      

http://dx.doi.org/10.1016/j.bioactmat.2023.12.019

109. Decellularized extracellular matrix biomaterials for regenerative therapies: Advances, challenges and clinical prospects    

Golebiowska, AA; Intravaia, JT; Sathe, VM; Kumbar, SG; Nukavarapu, SP      

http://dx.doi.org/10.1016/j.bioactmat.2023.09.017

110. Reprogramming macrophages via immune cell mobilized hydrogel microspheres for osteoarthritis treatments

Xiao, PC; Han, XY; Huang, YR; Yang, JY; Chen, L; Cai, ZW; Hu, N; Cui, WG; Huang, W      

http://dx.doi.org/10.1016/j.bioactmat.2023.09.010

111. 3D printing of bio-instructive materials: Toward directing the cell

Zielinski, PS; Gudeti, PKR; Rikmanspoel, T; Wlodarczyk-Biegun, MK      

http://dx.doi.org/10.1016/j.bioactmat.2022.04.008

112. A review on current research status of the surface modification of Zn-based biodegradable metals 

Yuan, W; Xia, DD; Wu, SL; Zheng, YF; Guan, ZP; Rau, J     

http://dx.doi.org/10.1016/j.bioactmat.2021.05.018

113. Antibacterial approaches in tissue engineering using metal ions and nanoparticles: From mechanisms to applications    

Godoy-Gallardo, M; Eckhard, U; Delgado, LM; Puente, YJDD; Hoyos-Nogués, M; Gil, FJ; Perez, RA      

http://dx.doi.org/10.1016/j.bioactmat.2021.04.033

114. Biobased polyurethanes for biomedical applications     

Wendels, S; Avérous, L   

http://dx.doi.org/10.1016/j.bioactmat.2020.10.002

115. Advancing application of mesenchymal stem cell-based bone tissue regeneration

Shang, FQ; Yu, Y; Liu, SY; Ming, LG; Zhang, YJ; Zhou, ZF; Zhao, JY; Jin, Y 

http://dx.doi.org/10.1016/j.bioactmat.2020.08.014

116. 3D-printed tri-element-doped hydroxyapatite/ polycaprolactone composite scaffolds with antibacterial potential for osteosarcoma therapy and bone regeneration

Huang, H; Qiang, L; Fan, MJ; Liu, YH; Yang, AC; Chang, DB; Li, JS; Sun, T; Wang, YW; Guo, RY; Zhuang, HJ; Li, XY; Guo, TL; Wang, JW; Tan, H; Zheng, PF; Weng, J      

http://dx.doi.org/10.1016/j.bioactmat.2023.07.004

117. Structural and biological engineering of 3D hydrogels for wound healing      

Norahan, MH; Pedroza-Gonz, SC; Sanchez-Salazar, MG; Alvarez, MM; Santiago, GTD      

http://dx.doi.org/10.1016/j.bioactmat.2022.11.019

118. Tumor Microenvironment-Adaptive Nanoplatform Synergistically Enhances Cascaded Chemodynamic Therapy   

Wang, YM; Wang, D; Zhang, YY; Xu, H; Shen, LX; Cheng, J; Xu, XY; Tan, H; Chen, XY; Li, JS      

http://dx.doi.org/10.1016/j.bioactmat.2022.09.025

119. Passively-targeted mitochondrial tungsten-based nanodots for efficient acute kidney injury treatment    

Huang, Q; Yang, YQ; Zhao, TJ; Chen, QH; Liu, M; Ji, ST; Zhu, Y; Yang, YR; Zhang, JP; Zhao, HX; Nan, YY; Ai, KL      

http://dx.doi.org/10.1016/j.bioactmat.2022.08.022

120. Curcumenol triggered ferroptosis in lung cancer cells via lncRNA H19/miR-19b-3p/FTH1 axis

Zhang, RN; Pan, T; Xiang, Y; Zhang, MM; Xie, H; Liang, ZM; Chen, B; Xu, C; Wang, J; Huang, XX; Zhu, QR; Zhao, ZM; Gao, Q; Wen, CY; Liu, WC; Ma, WR; Feng, J; Sun, XN; Duan, T; Leung, ELH; Xie, T; Wu, QB; Sui, XB  

http://dx.doi.org/10.1016/j.bioactmat.2021.11.013

121. Zn/Sr dual ions-collagen co-assembly hydroxyapatite enhances bone regeneration through procedural osteo-immunomodulation and osteogenesis

Zhong, ZY; Wu, XD; Wang, YF; Li, MD; Li, Y; Liu, XL; Zhang, X; Lan, ZY; Wang, JL; Du, YY; Zhang, SM      

http://dx.doi.org/10.1016/j.bioactmat.2021.09.013

122. Overcoming the obstacles of current photodynamic therapy in tumors using nanoparticles

Lee, D; Kwon, S; Jang, SY; Park, E; Lee, Y; Koo, H      

http://dx.doi.org/10.1016/j.bioactmat.2021.06.019

123. Recent research and progress of biodegradable zinc alloys and composites for biomedical applications: Biomechanical and biocorrosion perspectives      

Kabir, H; Munir, K; Wen, C; Li, YC      

http://dx.doi.org/10.1016/j.bioactmat.2020.09.013

124. 3D printing of bone tissue engineering scaffolds    

Wang, C; Huang, W; Zhou, Y; He, LB; He, Z; Chen, ZL; He, X; Tian, S; Liao, JM; Lu, BH; Wei, Y; Wang, M   

http://dx.doi.org/10.1016/j.bioactmat.2020.01.004

125. Stimuli-responsive peptide assemblies: Design, self-assembly, modulation, and biomedical applications      

Mu, RQ; Zhu, DZ; Abdulmalik, S; Wijekoon, S; Wei, G; Kumbar, SG 

http://dx.doi.org/10.1016/j.bioactmat.2024.01.023

126. Embedded 3D bioprinting - An emerging strategy to fabricate biomimetic & large vascularized tissue constructs      

Budharaju, H; Sundaramurthi, D; Sethuraman, S     

http://dx.doi.org/10.1016/j.bioactmat.2023.10.012

127. Magnetic nanoparticles for ferroptosis cancer therapy with diagnostic imaging 

Ko, MJ; Min, S; Hong, H; Yoo, W; Joo, J; Zhang, YS; Kang, H; Kim, DH 

http://dx.doi.org/10.1016/j.bioactmat.2023.09.015

128. Wound microenvironment self-adaptive hydrogel with efficient angiogenesis for promoting diabetic wound healing     

Shao, ZJ; Yin, TY; Jiang, JB; He, Y; Xiang, T; Zhou, SB      

http://dx.doi.org/10.1016/j.bioactmat.2022.06.018

129. Gold@Halloysite nanotubes-chitin composite hydrogel with antibacterial and hemostatic activity for wound healing

Zhao, PX; Feng, Y; Zhou, YQ; Tan, CY; Liu, MX   

http://dx.doi.org/10.1016/j.bioactmat.2022.05.035

130. Biomimetic AgNPs@antimicrobial peptide/silk fibroin coating for infection-trigger antibacterial capability and enhanced osseointegration   

Zhou, WH; Bai, T; Wang, L; Cheng, Y; Xia, DD; Yu, S; Zheng, YF      

http://dx.doi.org/10.1016/j.bioactmat.2022.05.015

131. Injectable bone cements: What benefits the combination of calcium phosphates and bioactive glasses could bring?

Demir-Oguz, Ö; Boccaccini, AR; Loca, D   

http://dx.doi.org/10.1016/j.bioactmat.2022.04.007

132. Defect self-assembly of metal-organic framework triggers ferroptosis to overcome resistance   

Peng, HB; Zhang, XC; Yang, P; Zhao, JX; Zhang, W; Feng, NP; Yang, WL; Tang, J      

http://dx.doi.org/10.1016/j.bioactmat.2021.12.018

133. Engineered gold/black phosphorus nanoplatforms with remodeling tumor microenvironment for sonoactivated catalytic tumor theranostics

Chen, T; Zeng, WW; Tie, CJ; Yu, M; Hao, HS; Deng, Y; Li, QQ; Zheng, HR; Wu, MY; Mei, L    

http://dx.doi.org/10.1016/j.bioactmat.2021.09.016

134. Advanced hydrogels for the repair of cartilage defects and regeneration      

Wei, W; Ma, YZ; Yao, XD; Zhou, WY; Wang, XZ; Li, CL; Lin, JX; He, QL; Leptihn, S; Ouyang, HW      

http://dx.doi.org/10.1016/j.bioactmat.2020.09.030

135. Silk fibroin-based inks for in situ 3D printing using a double crosslinking process 

Agostinacchio, F; Fitzpatrick, V; Dirè, S; Kaplan, DL; Motta, A      

http://dx.doi.org/10.1016/j.bioactmat.2024.01.015

136. Piezoelectric hydrogel for treatment of periodontitis through bioenergetic activation     

Liu, X; Wan, XY; Sui, BY; Hu, QH; Liu, ZR; Ding, TT; Zhao, J; Chen, YX; Wang, ZL; Li, LL      

http://dx.doi.org/10.1016/j.bioactmat.2024.02.011

137. SERS sensing for cancer biomarker: Approaches and directions   

Vazquez-Iglesias, L; Casagrande, GMS; Garcia-Lojo, D; Leal, LF; Ngo, TA; Perez-Juste, J; Reis, RM; Kant, K; Pastoriza-Santos, I      

http://dx.doi.org/10.1016/j.bioactmat.2023.12.018

138. Enhancing drug penetration in solid tumors via nanomedicine: Evaluation models, strategies and perspectives 

Shen, XD; Pan, DY; Gong, QY; Gu, ZW; Luo, K    

http://dx.doi.org/10.1016/j.bioactmat.2023.10.017

139. Ultrasound-triggered biomimetic ultrashort peptide nanofiber hydrogels promote bone regeneration by modulating macrophage and the osteogenic immune microenvironment

Zhang, F; Lv, MC; Wang, SY; Li, MY; Wang, Y; Hu, CJ; Hu, W; Wang, XK; Wang, XG; Liu, ZD; Fan, Z; Du, JZ; Sun, Y      

http://dx.doi.org/10.1016/j.bioactmat.2023.08.008

140. Triple-synergistic MOF-nanozyme for efficient antibacterial treatment      

Wang, MX; Zhou, X; Li, YH; Dong, YQ; Meng, JS; Zhang, S; Xia, LB; He, ZZ; Ren, L; Chen, ZW; Zhang, XC      

http://dx.doi.org/10.1016/j.bioactmat.2022.01.036

141. Multi-crosslinking hydrogels with robust bio-adhesion and pro-coagulant activity for first-aid hemostasis and infected wound healing 

Zou, CY; Lei, XX; Hu, JJ; Jiang, YL; Li, QJ; Song, YT; Zhang, QY; Li-Ling, J; Xie, HQ  

http://dx.doi.org/10.1016/j.bioactmat.2022.02.034

142. Adipose-derived mesenchymal stem cells (MSCs) are a superior cell source for bone tissue engineering

Gou, YN; Huang, YR; Luo, WP; Li, YN; Zhao, P; Zhong, JM; Dong, XY; Guo, MC; Li, AH; Hao, AL; Zhao, GZ; Wang, YH; Zhu, Y; Zhang, H; Shi, YH; Wagstaff, W; Luu, HH; Shi, LL; Reid, RR; He, TC; Fan, JM      

http://dx.doi.org/10.1016/j.bioactmat.2023.12.003

143. Developing natural polymers for skin wound healing    

Zhang, H; Lin, X; Cao, XY; Wang, Y; Wang, JL; Zhao, YJ      

http://dx.doi.org/10.1016/j.bioactmat.2023.11.012

144. Enzyme-triggered deep tumor penetration of a dual-drug nanomedicine enables an enhanced cancer combination therapy 

Gu, L; Duan, ZY; Li, X; Li, X; Li, YG; Li, XL; Xu, G; Gao, P; Zhang, H; Gu, ZW; Chen, J; Gong, QY; Luo, K      

http://dx.doi.org/10.1016/j.bioactmat.2023.02.015

145. Additively manufactured pure zinc porous scaffolds for critical-sized bone defects of rabbit femur

Xia, DD; Qin, Y; Guo, H; Wen, P; Lin, H; Voshage, M; Schleifenbaum, JH; Cheng, Y; Zheng, YF      

http://dx.doi.org/10.1016/j.bioactmat.2022.03.010

146. An overview of substrate stiffness guided cellular response and its applications in tissue regeneration   

Yi, BC; Xu, Q; Liu, W      

http://dx.doi.org/10.1016/j.bioactmat.2021.12.005

147. Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: A review

Yuan, L; Ding, SL; Wen, CE      

http://dx.doi.org/10.1016/j.bioactmat.2018.12.003

148. In situ immunomodulation of tumors with biosynthetic bacteria promote anti-tumor immunity  

Lin, ZD; Meng, FQ; Ma, YM; Zhang, C; Zhang, ZR; Yang, ZX; Li, Y; Hou, LL; Xu, YZ; Liang, X; Zhang, XD      

http://dx.doi.org/10.1016/j.bioactmat.2023.09.007

149. Bone microenvironment regulative hydrogels with ROS scavenging and prolonged oxygen-generating for enhancing bone repair    

Sun, H; Xu, J; Wang, YYF; Shen, SY; Xu, XQ; Zhang, L; Jiang, Q      

http://dx.doi.org/10.1016/j.bioactmat.2022.12.021

150. Peptide-based nanomaterials: Self-assembly, properties and applications      

Li, T; Lu, XM; Zhang, MR; Hu, K; Li, Z      

http://dx.doi.org/10.1016/j.bioactmat.2021.09.029

151. Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics 

Kurian, AG; Singh, RK; Patel, KD; Lee, JH; Kim, HW      

http://dx.doi.org/10.1016/j.bioactmat.2021.06.027

152. Mussel-inspired adhesive antioxidant antibacterial hemostatic composite hydrogel wound dressing via photo-polymerization for infected skin wound healing  

Yang, YT; Liang, YP; Chen, JY; Duan, XL; Guo, BL      

http://dx.doi.org/10.1016/j.bioactmat.2021.06.014

153. Bone physiological microenvironment and healing mechanism: Basis for future bone-tissue engineering scaffolds 

Zhu, GY; Zhang, TX; Chen, M; Yao, K; Huang, XQ; Zhang, B; Li, YZ; Liu, J; Wang, YB; Zhao, ZH      

http://dx.doi.org/10.1016/j.bioactmat.2021.03.043

154. Antibacterial metals and alloys for potential biomedical implants

Zhang, EL; Zhao, XT; Hu, JL; Wang, RX; Fu, S; Qin, GW      

http://dx.doi.org/10.1016/j.bioactmat.2021.01.030

155. M2 macrophage-derived exosomes promote diabetic fracture healing by acting as an immunomodulator

Wang, YL; Lin, QS; Zhang, H; Wang, SC; Cui, J; Hu, Y; Liu, JL; Li, MM; Zhang, K; Zhou, FJ; Jing, YY; Geng, Z; Su, JC      

http://dx.doi.org/10.1016/j.bioactmat.2023.05.018

156. Recent advances in engineered polymeric materials for efficient photodynamic inactivation of bacterial pathogens 

Gnanasekar, S; Kasi, G; He, XD; Zhang, K; Xu, LQ; Kang, ET      

http://dx.doi.org/10.1016/j.bioactmat.2022.08.011

157. Ultrasmall Fe-doped carbon dots nanozymes for photoenhanced antibacterial therapy and wound healing 

Liu, YH; Xu, BL; Lu, MZ; Li, SS; Guo, J; Chen, FZ; Xiong, XL; Yin, Z; Liu, HY; Zhou, DS      

http://dx.doi.org/10.1016/j.bioactmat.2021.10.023

158. Microstructure evolution and texture tailoring of reduced graphene oxide reinforced Zn scaffold 

Yang, YW; Cheng, Y; Peng, SP; Xu, L; He, CX; Qi, FW; Zhao, MC; Shuai, CJ    

http://dx.doi.org/10.1016/j.bioactmat.2020.10.017

159. Intravesical chemotherapy synergize with an immune adjuvant by a thermo-sensitive hydrogel system for bladder cancer  

Liu, J; Yang, TY; Dai, L; Shi, K; Hao, Y; Chu, BY; Hu, D; Bei, Z; Yuan, L; Pan, M; Qian, ZY      

http://dx.doi.org/10.1016/j.bioactmat.2023.08.013

160. Research advances of nanomaterials for the acceleration of fracture healing      

Zhang, M; Xu, F; Cao, JC; Dou, QQ; Wang, J; Wang, J; Yang, L; Chen, W      

http://dx.doi.org/10.1016/j.bioactmat.2023.08.016

161. Covalent organic framework nanomedicines: Biocompatibility for advanced nanocarriers and cancer theranostics applications  

Singh, N; Kim, J; Kim, J; Lee, KYW; Zunbul, Z; Lee, IJ; Kim, E; Chi, SG; Kim, JS      

http://dx.doi.org/10.1016/j.bioactmat.2022.08.016

162. Magnesium surface-activated 3D printed porous PEEK scaffolds for in vivo osseointegration by promoting angiogenesis and osteogenesis  

Wei, XH; Zhou, WH; Tang, Z; Wu, H; Liu, YC; Dong, H; Wang, N; Huang, H; Bao, SS; Shi, L; Li, XK; Zheng, YF; Guo, Z      

http://dx.doi.org/10.1016/j.bioactmat.2022.05.011

163. An NIR photothermal-responsive hybrid hydrogel for enhanced wound healing  

Jin, L; Guo, XQ; Gao, D; Liu, Y; Ni, JH; Zhang, ZM; Huang, YQ; Xu, GB; Yang, Z; Zhang, XC; Jiang, XH      

http://dx.doi.org/10.1016/j.bioactmat.2022.03.006

164. Recent advances in biomaterials for 3D scaffolds: A review   

Nikolova, MP; Chavali, MS   

http://dx.doi.org/10.1016/j.bioactmat.2019.10.005

165. Full-thickness osteochondral defect repair using a biodegradable bilayered scaffold of porous zinc and chondroitin sulfate hydrogel      

Yang, F; Li, YG; Wang, L; Che, HD; Zhang, X; Jahr, H; Wang, LN; Jiang, D; Huang, HJ; Wang, JQ  

http://dx.doi.org/10.1016/j.bioactmat.2023.10.014

166. Exosomes: Small vesicles with big roles in cancer, vaccine development, and therapeutics 

Thakur, A; Parra, DC; Motallebnejad, P; Brocchi, M; Chen, HJ      

http://dx.doi.org/10.1016/j.bioactmat.2021.08.029

167. Carrier-free nanodrugs with efficient drug delivery and release for cancer therapy: From intrinsic physicochemical properties to external modification      

Mei, H; Cai, SS; Huang, DN; Gao, HL; Cao, J; He, B      

http://dx.doi.org/10.1016/j.bioactmat.2021.06.035

168. An injectable, self-healing, electroconductive extracellular matrix-based hydrogel for enhancing tissue repair after traumatic spinal cord injury

Luo, Y; Fan, L; Liu, C; Wen, HQ; Wang, SH; Guan, PF; Chen, DF; Ning, CY; Zhou, L; Tan, GX  

http://dx.doi.org/10.1016/j.bioactmat.2021.05.039

169. Boosting cartilage repair with silk fibroin-DNA hydrogel-based cartilage organoid precursor     

Shen, CY; Wang, J; Li, GF; Hao, SY; Wu, Y; Song, PR; Han, YF; Li, MM; Wang, GC; Xu, K; Zhang, H; Ren, XX; Jing, YY; Yang, R; Geng, Z; Su, JC 

http://dx.doi.org/10.1016/j.bioactmat.2024.02.016

170. Tailoring micro/nano-fibers for biomedical applications

Kong, B; Liu, R; Guo, JH; Lu, L; Zhou, Q; Zhao, YJ      

http://dx.doi.org/10.1016/j.bioactmat.2022.04.016

171. Anti-inflammatory activity of curcumin-loaded tetrahedral framework nucleic acids on acute gouty arthritis

Zhang, M; Zhang, XL; Tian, TR; Zhang, Q; Wen, YT; Zhu, JY; Xiao, DX; Cui, WT; Lin, YF      

http://dx.doi.org/10.1016/j.bioactmat.2021.06.003

172. 3D printed silk-gelatin hydrogel scaffold with different porous structure and cell seeding strategy for cartilage regeneration

Li, QT; Xu, S; Feng, Q; Dai, QY; Yao, LT; Zhang, YC; Gao, HC; Dong, H; Chen, DF; Cao, XD      

http://dx.doi.org/10.1016/j.bioactmat.2021.03.013

 

Hot Papers:

1. Going below and beyond the surface: Microneedle structure, materials, drugs, fabrication, and applications for wound healing and tissue regeneration

Lyu, S; Dong, ZF; Xu, XX; Bei, HP; Yuen, HY; Cheung, CWJ; Wong, MS; He, Y; Zhao, X

http://dx.doi.org/10.1016/j.bioactmat.2023.04.003

2. Strategies of functionalized GelMA-based bioinks for bone regeneration: Recent advances and future perspectives

Zhu, YR; Yu, XG; Liu, H; Li, JJ; Gholipourmalekabadi, M; Lin, KL; Yuan, CY; Wang, PL

http://dx.doi.org/10.1016/j.bioactmat.2024.04.032

3. Microenvironment-responsive metal-phenolic network release platform with ROS scavenging, anti-pyroptosis, and ECM regeneration for intervertebral disc degeneration

Zhou, H; He, JP; Liu, RF; Cheng, J; Yuan, YH; Mao, WP; Zhou, J; He, HH; Liu, QQ; Tan, W; Shuai, CJ; Deng, YW

http://dx.doi.org/10.1016/j.bioactmat.2024.02.036

4. Antibacterial conductive self-healing hydrogel wound dressing with dual dynamic bonds promotes infected wound healing

Qiao, LP; Liang, YP; Chen, JY; Huang, Y; Alsareii, SA; Alamri, AM; Harraz, FA; Guo, BL

http://dx.doi.org/10.1016/j.bioactmat.2023.07.015

5. NIR-enhanced Pt single atom/g-C3N4 nanozymes as SOD/CAT mimics to rescue ATP energy crisis by regulating oxidative phosphorylation pathway for delaying osteoarthritis progression

Xiang, JH; Yang, X; Tan, ML; Guo, JF; Ye, YT; Deng, JJ; Huang, ZR; Wang, HJ; Su, W; Cheng, JW; Zheng, L; Liu, SJ; Zhong, JP; Zhao, JM

http://dx.doi.org/10.1016/j.bioactmat.2024.02.018

6. Wound microenvironment self-adaptive hydrogel with efficient angiogenesis for promoting diabetic wound healing

Shao, ZJ; Yin, TY; Jiang, JB; He, Y; Xiang, T; Zhou, SB

http://dx.doi.org/10.1016/j.bioactmat.2022.06.018

7. Developing natural polymers for skin wound healing

Zhang, H; Lin, X; Cao, XY; Wang, Y; Wang, JL; Zhao, YJ

http://dx.doi.org/10.1016/j.bioactmat.2023.11.012

8. 3D-printed versatile biliary stents with nanoengineered surface for anti-hyperplasia and antibiofilm formation

Lee, H; Won, DS; Park, S; Park, Y; Kim, JW; Han, G; Na, Y; Kim, SB; Kang, H; Park, JK; Jang, TS; Lee, SJ; Park, SA; Lee, SS; Park, JH; Jung, HD

http://dx.doi.org/10.1016/j.bioactmat.2024.03.018

Back to Highly-cited and ESI-hot papers

Stay Informed

Register your interest and receive email alerts tailored to your needs. Sign up below.