Most Downloaded Articles

Open access

ISSN: 2666-5441

The role of artificial intelligence and IoT in prediction of earthquakes: Review

Earthquakes are classified as one of the most devastating natural disasters that can have catastrophic effects on the environment, lives, and properties. There has been an increasing interest in the...

Share article

Optimizing zero-shot text-based segmentation of remote sensing imagery using SAM and Grounding DINO

The use of AI technologies in remote sensing (RS) tasks has been the focus of many individuals in both the professional and academic domains. Having more accessible interfaces and tools that allow people...

Share article

Automatic description of rock thin sections: A web application

The identification and characterization of rock types is a core activity in geology and related fields, including mining, petroleum, environmental science, industry, and construction. Traditionally,...

Share article

Machine learning in petrophysics: Advantages and limitations

Machine learning provides a powerful alternative data-driven approach to accomplish many petrophysical tasks from subsurface data. It can assimilate information from large and rich data bases and infer...

Share article

Determination of future land use changes using remote sensing imagery and artificial neural network algorithm: A case study of Davao City, Philippines

Land use and land cover (LULC) changes refer to alterations in land use or physical characteristics. These changes can be caused by human activities, such as urbanization, agriculture, and resource...

Share article

Flood susceptibility assessment using artificial neural networks in Indonesia

Flood incidents can massively damage and disrupt a city economic or governing core. However, flood risk can be mitigated through event planning and city-wide preparation to reduce damage. For, governments,...

Share article

ASTER data processing and fusion for alteration minerals and silicification detection: Implications for cupriferous mineralization exploration in the western Anti-Atlas, Morocco

Alteration minerals and silicification are typically associated with a variety of ore mineralizations and could be detected using multispectral remote sensing sensors as indicators for mineral exploration....

Share article

MLReal: Bridging the gap between training on synthetic data and real data applications in machine learning

Among the biggest challenges we face in utilizing neural networks trained on waveform (i.e., seismic, electromagnetic, or ultrasound) data is its application to real data. The requirement for accurate...

Share article

A combined deep CNN-RNN network for rainfall-runoff modelling in Bardha Watershed, India

In recent years, there has been a growing interest in using artificial intelligence (AI) for rainfall-runoff modelling, as it has shown promising adaptability in this context. The current study involved...

Share article

Water resource forecasting with machine learning and deep learning: A scientometric analysis

Water prediction plays a crucial role in modern-day water resource management, encompassing both hydrological patterns and demand forecasts. To gain insights into its current focus, status, and emerging...

Share article

Convolutional sparse coding network for sparse seismic time-frequency representation

Seismic time-frequency (TF) transforms are essential tools in reservoir interpretation and signal processing, particularly for characterizing frequency variations in non-stationary seismic data. Recently,...

Share article

Loosening rocks detection at Draa Sfar deep underground mine in Morocco using infrared thermal imaging and image segmentation models

Rockfalls are among the frequent hazards in underground mines worldwide, requiring effective methods for detecting unstable rock blocks to ensure miners' and equipment's safety. This study proposes...

Share article

LatentPINNs: Generative physics-informed neural networks via a latent representation learning

Physics-informed neural networks (PINNs) are promising to replace conventional mesh-based partial differential equation (PDE) solvers by offering more accurate and flexible PDE solutions. However, PINNs...

Share article

Reservoir evaluation using petrophysics informed machine learning: A case study

We propose a novel machine learning approach to improve the formation evaluation from logs by integrating petrophysical information with neural networks using a loss function. The petrophysical information...

Share article

The potential of self-supervised networks for random noise suppression in seismic data

Noise suppression is an essential step in many seismic processing workflows. A portion of this noise, particularly in land datasets, presents itself as random noise. In recent years, neural networks...

Share article

Application of ChatGPT in soil science research and the perceptions of soil scientists in Indonesia

Since its arrival in late November 2022, ChatGPT-3.5 has rapidly gained popularity and significantly impacted how research is planned, conducted, and published using a generative artificial intelligence...

Share article

Ensemble hybrid machine learning methods for gully erosion susceptibility mapping: K-fold cross validation approach

Gully erosion is one of the important problems creating barrier to agricultural development. The present research used the radial basis function neural network (RBFnn) and its ensemble with random sub-space...

Share article

Robust low frequency seismic bandwidth extension with a U-net and synthetic training data

This work focuses on enhancing low frequency seismic data using a convolutional neural network trained on synthetic data. Traditional seismic data often lack both high and low frequencies, which are...

Share article

Wavefield solutions from machine learned functions constrained by the Helmholtz equation

Solving the wave equation is one of the most (if not the most) fundamental problems we face as we try to illuminate the Earth using recorded seismic data. The Helmholtz equation provides wavefield solutions...

Share article

Applying deep learning to teleseismic phase detection and picking: PcP and PKiKP cases

The availability of a tremendous amount of seismic data demands seismological researchers to analyze seismic phases efficiently. Recently, deep learning algorithms exhibit a powerful capability of detecting...

Share article

Leveraging boosting machine learning for drilling rate of penetration (ROP) prediction based on drilling and petrophysical parameters

Drilling optimization requires accurate drill bit rate-of-penetration (ROP) predictions. ROP decreases drilling time and costs and increases rig productivity. This study employs random forest (RF),...

Share article

A new integrated neurosymbolic approach for crop-yield prediction using environmental data and satellite imagery at field scale

Crop-yield is a crucial metric in agriculture, essential for effective sector management and improving the overall production process. This indicator is heavily influenced by numerous environmental...

Share article

On the application of machine learning algorithms in predicting the permeability of oil reservoirs

Permeability is one of the main oil reservoir characteristics. It affects potential oil production, well-completion technologies, the choice of enhanced oil recovery methods, and more. The methods used...

Share article

Soil liquefaction assessment using machine learning

Liquefaction is one of the prominent factors leading to damage to soil and structures. In this study, the relationship between liquefaction potential and soil parameters is determined by applying feature...

Share article

Self-supervised multi-stage deep learning network for seismic data denoising

Seismic data denoising is a critical process usually applied at various stages of the seismic processing workflow, as our ability to mitigate noise in seismic data affects the quality of our subsequent...

Share article

Stay Informed

Register your interest and receive email alerts tailored to your needs. Sign up below.